Dark fermentation for hydrogen production
Dark fermentarion for hydrogen production
DOI:
https://doi.org/10.56643/rcia.v1i1.152Keywords:
Anaerobic bacteria, Biofuels, Biohydrogen, WastesAbstract
Since the industrial revolution, a production system
has been perpetuated in which the use of fossil
fuels has been the most common and profitable
production scenario in the short term. What has
caused global climate change, causing alterations in
temperature and precipitation patterns. Currently,
the search for alternative fuels that minimize environmental
pollution, as well as reuse, recycle, and
reuse the waste produced in production processes
is of vital importance. The dark fermentation technology
for hydrogen production is presented as an
environmentally friendly process, with the potential
for hydrogen production and meeting energy
demand. In addition to promoting the disposal of
organic waste, both agricultural and urban, and
transforming them into valuable products. The
present work is an analysis of the state of the art
of the dark fermentation process for the production
of biohydrogen, the participating microorganisms
and the main actions to improve the performance
of the biotechnological process. The nature and type
of research was qualitative and exploratory, respectively,
and the methodology used for this research
was bibliographic / documentary. It is intended that
the information collected can be used as a basis for
future research and thesis development. It is concluded
that the use of residual, agricultural and / or
urban biomass, from its transformation into hydrogen,
through dark fermentation, has the potential
to generate benefits for society, contributing to sustainable
development in energy production.
References
Azwar, M., Hussain, M., y Abdul, -W. A. (2014). Development of biohydrogen production by photobiological fermentation and electrochemical process: a review. Renewable Sustainable Energy Review, 31, 158-173 https://doi.org/10.1016/j.rser.2013.11.022
Baeyens, J., Huili, Z., Jiapei, N., Lise, A., Raf, D., Renaud, A., y Yimin, D. (2020). Reviewing the potential of biohydrogen production by fermentation . Renewable and sustainable energy reviews,131, https://doi.org/10.1016/j.rser.2020.110023.
Banu, J. R., Kavitha, S., Kannah, R. Y., Bhosale, R. R., y Kumar, G. (2020). Industrial waste water to biohydrogen: possibilities towards successful biorefinery route. Bioresources Technologyc, 298, https://doi.org/10.1016/j.biortech.2019.122378.
Bao, M., Su, H., y Tan, T. (2012). Biohydrogen Production by Dark Fermentation of Starch Using Mixed Bacterial Cultures of Bacillus sp and Brevumdimonas sp. Energy and Fuels 26(9) , 5872-5878. doi 10.1021/ef300666m.
Bedoya, A., Castrillón, J., Ramírez, J., Vázquez, J. E., y Arias Zabala, M. (2008). Producción biológica de hidrógeno: una aproximacion al estado del arte. DYNA. Año 75, (154), 137-157. http://www.scielo.org.co/pdf/dyna/v75n154/a14v75n154.pdf
Cepal (2019). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. Objetivos, metas e indicadores mundiales. https://repositorio.cepal.org/bitstream/handle/11362/40155/24/S1801141_es.pdf
Chen, S., Rotaru, A., E, Shrestha, P. M., Malvankar, N. S., Liu, F. Lovley, D. R. (2018). Promoting interspecies electron transfer with biochar. Science Rep. 4, 5019. https://doi.org/10.1038/srep05019
Christiansen, L. von, y Haselip, J. (2018). UN Environment EmissionsGap Report 2018.
Cimon, C., Kadota, P., y Eskicioglu, C. (2019). Effect of biocharand wood as ash amendment on biochemical methane production of wastewater sludge from a temperature phase anaerobic digestion process. Bioresource Technology 297 , https://doi.org/10.1016/j.biortech.2019.122440.
Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., Lee, M. (2009). Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. Lancet. 373(9676), 1693-1733. doi: 10.1016/S0140-6736(09)60935-1.
Dong-Hoon, K., y Kim, M.-S. (2011). Hydrogenases for biological hydrogen production. Bioresource Technology. 102(18), 8423-8431 doi 10.1016/j.biortech.2011.02.113.
Duan, X., Chen, Y., Yan, Y. Y., Feng, L. Y., Chen, Y. G., y Zhou, Q. (2019). New method for algae comprehensive utilization: algae derived biocar enhances algae anaerobic fermentation for shortchain fatty acids production . Bioresources Technology. 289, https://doi.org/10.1016/j.biortech.2019.121637.
Eroglu, E., y Melis, A. (2011). Photobiological hydrogen production: recent advances and state of the art. Bioresource Technology. 102 (18), 8403-8413. https://doi.org/10.1016/j.biortech.2011.03.026
Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P., y Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy. 144, 73-95 https://doi.org/10.1016/j.apenergy.2015.01.045
Kotay, S. M., y Das, D. (2008). Biohydrogen as a renewable energy resource- prospects and potentials. International Journal Hydrogen Energy. 33(1), 258-263 https://doi.org/10.1016/j.ijhydene.2007.07.031
Koutsopoulos, T., Fotidis, L., Tsolakis, N., y M. G. (2009). Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature(70¨C). Biomass bioenergy. 33(9), 1168-1174 https://doi.org/10.1016/J.BIOMBIOE.2009.05.001
Lin, C. Y., y Chang, R. C. (2004). Fermentative hydrogen production at ambient temperature. International Journal of Hydrogen Energy, 29(7), 715-720. doi:10.1016/j.ijhydene.2003.09.002
Lin, C. Y., y Chen, H. P. (2006). Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. International journal of hydrogen energy, 31(7), 953-960 https://doi.org/10.1016/j.ijhydene.2005.07.009
Lu, C., Zhang, H., Zhang, Q., Chu, C., Tahir, N., Ge, X., … Zhang, T. (2019). An automated control system for pilot-scale biohydrogen production: design, operation and validation. International Journal of Hydrogen Energy, 45(6), 3795-3806. doi:10.1016/j.ijhydene.2019.04.28.
Mirza, S., Qazi, J. I., Liang, Y., y Chen, S. (2019). Growth characteristics and photofermentative biohydrogen production potential of purple non sulfure bacteria from sugar cane bagasse. Fuel. 255, 115805. doi: 10.1016/j.fuel.2019.115805
Mishra, S., Roy, M., & Mohanty, K. (2019). Microalgal bioenergy production under zero-waste biorefinery approach: recent advances and future perspectives . Bioresources Technology. 292, 122008. doi: 10.1016/j.biortech.2019.122008
Moreira, D., y Pires, J. (2016). Atmospheric CO2 capture by algae: negative carbon dioxide emissions path. Bioresource Technology. 215, 371-379 doi: 10.1016/j.biortech.2016.03.060
Mu, D., Liu, H., Lin, W., Shukla, P., y Luo, J. (2020). Simoultaneous biohydrogen production from dark fermentation od duckweed and waste utilization for microalgal lipid production. Bioresource Technology. 302, https://doi.org/10.1016/j.biortech.2020.122879.
NREL (2021, mayo 23). National Renewable Energy Laboratory. https://www.nrel.gov/bioenergy/biohydrogen.html
Pandey, A. (2013). Biohydrogen. Elsevier Science and Technology, 259-278 https://www.elsevier.com/books/biohydrogen/pandey/978-0-444-59555-3.
Saady, N. (2013). Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. International Journal Hydrogen. 38(30), 13172-91. doi:10.1016/j.ijhydene.2013.07.122.
Sharma, P., y Melkania, U. (2017). Biochar enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of enterobacter aerogenes and E. coli. International Journal Hydrogen Energy. 42(30), 18865-18874.
Show, K. Y., YAN, Y., Zong, C., Guo, N., Chang, J., y Lee, D. (2019). State of the art challengues of biohydrogen from microalgae. Bioresource Technology. 289, https://doi.org/10.1016/j.biortech.2019.121747.
Silva, J., Mendes, J., Correia, J., Rocha, M., y Micoli, L. (2018). Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process. Journal of Biotechnology. 286, 71-78.
doi 10.1016/j.jbiotec.2018.09.004.
Sobrino, F., Rodríguez Monroy, C., y Hernández Pérez, J. L. (2011). Biofuels and fossil fuels: Life Cycle Analysis (LCA) optimisation through productive resources maximisation. Renewable and Sustainable Energy Reviews. 15(6), 2621-2628. https://doi.org/10.1016/j.rser.2011.03.010
Srivastava, N., Srivastava, M., Malhotra B, D., Gupta, V. K., Ramteke, P. W., Silva, R. N., … Mishra, P. K. (2019). Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnology Advances 37(6), 107384 doi:10.1016/j.biotechadv.2019.04.006
Staffell, I., Scamman, D., Velazquez-Abad, A., Balcombe, B., Dodds, P. E., Ekins, P., … Ward, K. (2019). The role of hydrogen and fuel cells in the global energy system. Energy Enviromental Science. 2 , 463-491. https://doi.org/10.1039/C8EE01157E
Suntomauro, F., Fan, J., Budarin, V., Parsons, S., Clark, J., Miller, T., y Chuck, C. J. (2018). Microbial oil production from the fermentation of microwave-depolynerised rape seed meal. Bioresource Technology Reports 4, 159-165. https://doi.org/10.1016/j.biteb.2018.10.008
Sunyoto, N. M., Zhu, M., Zhang, Z., y& Zhang, D. (2016 ). Effect of biochar addition on hydrogen and methane production in two phase anaerobic digestion of aqueos carbohydrates food waste. Bioresource Technology (219), 29-36. doi: 10.1016/j.biortech.2016.07.089
University of Oxford (2015). Global Challenges – Twelve risks that threaten human civilisation. Future of Humanity Institute/Oxford Martin School/Faculty of Philosophy.
Valdez-Vásquez, I., y Poggi-Varaldo, H. (2009). Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews 13(5), 1000-1013. https://doi.org/10.1016/j.rser.2008.03.003.
Yang, G., y Wang, J. L. (2019). Synergistic enhancement of biohydrogen production from grass fermentation using biochar combined with zero-valent iron nanoparticles. Fuel. 251, 420-427, doi:10.1016/J.FUEL.2019.04.059.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Héctor Alfredo López-Aguilar, Elliott Humberto Luna Nevárez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons 4.0, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.