Computer vision modeling and motion control for mobile robot navigation

Authors

DOI:

https://doi.org/10.56643/rcia.v3i1.174

Keywords:

Computer vision, Python, Arduino, OpenCV, Numpy

Abstract

This writing addresses the development for the interaction of a mobile robot in dynamic environments by integrating computer vision and motion control. It emphasizes the importance of real-time object detection and tracking to achieve safe navigation in practical applications. Despite advancements in computer vision and robotic control, challenges persist in adapting to unpredictable environments. Therefore, the proposed solution consists of a system that combines image processing techniques and robotic control. The prototype's design utilizes open-source hardware and software such as Python, Arduino, OpenCV, and Numpy. Arduino programming is employed to control a four-motor vehicle using a Bluetooth HC-05 module, while computer vision development tracks objects of different colors in real-time, sending commands to Arduino based on the detected color. The project is considered an advancement in mobile robotics by developing an integrated system that enables robots to navigate safely in dynamic environments. The combination of computer vision and motion control is presented as a practical solution supported by detailed testing.

References

Arroyave, L. F., Carvajal, M., y Ceballos, N. D. M. (2018b). Navegación de robots móviles en entornos con discontinuidades: una revisión. Revista Politécnica, 14(27), 103-115. https://doi.org/10.33571/rpolitec.v14n27a10

Velásquez Hernández, C. A., Chávez Chávez, J. J., Córdoba Nieto, E. (2015). Implementación de sistema de navegación autónomo en robot móvil experimental para reconstrucción y exploración de entornos desconocidos. Revista EIA. Memorias. https://revistas.eia.edu.co/index.php/mem/article/download/817/734/2346

Cazorla, M., y Viejo, D. (2015). Experiences Using an Open Source Software Library to Teach Computer Vision Subjects. Journal of Technology and Science Education, 5(3), 214-227.

Ericksen, P., y María, A. (2017). Implementación y comparativa de algoritmos de control y planificación local para robots móviles utilizando ROS. Archivo Digital UPM. https://orcid.org/0000-0002-8652-0300

Espinosa Valcárcel, F. A., Gordillo Cháves, C. A., Jiménez Moreno, R., y Avilés Sánchez, O. F. (2013). Machine vision algorithms applied to dynamic traffic light control. Dyna, 80(178), 132-140.

Ibarra Bonilla, M. N. (2009). Navegación autónoma de un robot con técnicas de localización y ruteo. Tesis de maestría. INAOE repositorio. http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/394

Montoya Holguín, C., Cortés Osorio, J. A., y Chaves Osorio, J. A. (2014). Sistema automático de reconocimiento de frutas basado en visión por computador. Ingeniare. Revista Chilena de Ingeniería, 22(4), 504-516.

Muñoz, D. J. (2006). Proceso de reconocimiento de objetos, asistido por computador (visión artificial), aplicando gases neuronales y técnicas de minería de datos. Scientia Et Technica, XII(30), 385-390.

Rehman, U. et al. (2023). Human tracking robotic camera based on image processing for live streaming of conferences and seminars. Heliyon, 9(8).

Rosenfeld, A., y Chellappa, R. (2003). Image Processing. Encyclopedia of Physical Science and Technology (Third Edition), 595-630.

Saldaña, E., Siche, R., Huamán, R., Luján, M., Castro, W., y Quevedo, R. (2013). Computer vision system in real-time for color determination on flat surface food. Scientia Agropecuaria, 4(1), 55-63.

Tarlak, F., Ozdemír, M., y Melíkoglu, M. (2016). Computer vision system approach in colour measurements of foods: Part I. development of methodology. Ciencia y Tecnologia de Alimentos, 36(2), 382-388.

Terashima, N. (2002). 12 – Computer Vision. Intelligent Communication Systems.

Urbano López, J., Bacca Cortes, E. B., y Buitrago Molina, J. (2021). Vision-based Software Tool System for Position Estimation Using a Smartphone. Ingeniería, 26(2), 284-305.

Valencia, C. et al. (2020). Driver-Assistant System Using Computer Vision and Machine Learning. Revista Facultad de Ingeniería, 29(54).

Published

2024-06-08

How to Cite

Sibaja Galindo, E., Bacilio López, B. L., Quintana Ramirez, R., Carrasco Francisco, J. A., & Rodríguez Santiago, A. L. (2024). Computer vision modeling and motion control for mobile robot navigation. Revista Científica De Ingenierías Y Arquitectura, 3(1), 38–51. https://doi.org/10.56643/rcia.v3i1.174

Issue

Section

Artículos