An ANALYSIS OF A BIOPESTICIDE WITH CONTROLLED DOSAGE OF BACILLUS THURINGIENSIS SUPPORTED ON HYBRID HYDROTALCITES USING ARTIFICIAL INTELLIGENCE.

Authors

  • Aldara Natalya Moreno Torres Universidad Michoacana de San Nicolas de Hidalgo https://orcid.org/0009-0009-3512-8665
  • Roberto Guerra González Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.56643/rcia.v4i1.201

Keywords:

algorithmic optimization, biological control, clean technologies, machine learning, sustainable agriculture

Abstract

Nowadays, controlled molecule dosage is not only essential for optimizing pharmacological processes but also a tool with great potential in agriculture. In this study, we explored how inorganic materials like layered double hydroxides (LDHs), known for their ability to adsorb bacteria, anions, and heavy metals, can be used as supports for a biopesticide based on Bacillus thuringiensis (Bt). The main goal was to analyze and improve the efficacy of this biopesticide using modern technologies. By applying a Random Forest-based artificial intelligence model, we simulated optimal dosage conditions and identified the most critical variables in the process. The results were clear: concentrations stood out as the most influential factor, while using LDHs as a support had a significant impact, accounting for 80% importance in the optimization. Additionally, the model achieved high precision, with a mean squared error (MSE) of 18.97 and a coefficient of determination (R2) of 0.87. These findings not only validate the biopesticide’s effectiveness but also highlight the importance of integrating artificial intelligence into hybrid material research. This approach enhances sustainable agriculture and opens the door to scaling these solutions for industrial applications, setting a foundation for future innovations in technological optimization.

References

Askeland, D. R., y Fulay, P. P. (2017). Estructuras cristalinas de materiales. En Ciencia e Ingeniería de los materiales (6ª ed., pp. 60-86). Cengage Learning.

Benítez Aguilar, A., Velázquez Cigarroa, E., y Márquez Molina, O. (2023). Análisis de modelos de producción local para la sostenibilidad y seguridad alimentaria en el Estado de México. En Castro Martínez, O. R., y Fontalvo Buelvas, J. C. (Eds.), Agricultura, huertos educativos y transformaciones socioecológicas: Experiencias significativas en México (pp. 15-34). SIEA.

Bravo, A., Gill, S. S., y Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423-435. https://doi.org/10.1016/j.toxicon.2006.11.022

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324

Cardoso, L., y Valim, J. (2006). Study of acids herbicides removal by calcined Mg-Al-CO3-LDH. Journal of Physical Chemistry of Solids, 67, 987-993. https://doi.org/10.1016/j.jpcs.2006.02.039

Caswell, T. A., Droettboom, M., Lee, A., Hunter, J., Firing, E., Nielsen, J., Elson, P., Seppänen, J. K., Dale, D., y Varoquaux, N. (2021). Matplotlib: Visualization with Python. Zenodo. https://doi.org/10.5281/zenodo.4559847

Castillo López, E., Muñoz Osorio, G. A., López Tolentino, G., y Marín Colli, E. E. (2024). Evaluation of different doses of chemical fertilization on growth and yield of creole pepper “Xkat iik” (Capsicum annuum L.). Revista Chapingo Serie Agricultura Tropical, 4(1). https://doi.org/10.5154/r.rchsat.2023.04.03

Chaara, D., Pavlovic, I., Bruna, F., Ulibarri, M., y Barriga, C. (2010). Removal of nitrophenol pesticides from aqueous solutions by layered double hydroxides and their calcined products. Applied Clay Science, 50, 292-298. https://doi.org/10.1016/j.clay.2010.07.007

Duraisamy, K., et al. (2023). Development of a new broad-spectrum microencapsulation-based spray drying formulation of Bacillus thuringiensis. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2023.1273725

EPA (Environmental Protection Agency). (1998). Reregistration Eligibility Decision (RED) for Bacillus thuringiensis. Office of Prevention, Pesticides and Toxic Substances.

Fu, Y., Fu, X., Song, W., Li, Y., Li, X., y Yan, L. (2023). Recent progress of layered double hydroxide-based materials in wastewater treatment. Materials, 16(16), 5723. https://doi.org/10.3390/ma16165723

Glare, T. R. (2000). Bacillus thuringiensis: Biology, ecology, and safety. Springer. https://doi.org/10.1007/978-94-011-4010-2

Harris, C. R., Millman, K. J., Van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. https://doi.org/10.1038/s41586-020-2649-2

Ho, T. K. (1995). Random Decision Forests. Proceedings of the 3rd International Conference on Document Analysis and Recognition, 278-282. https://doi.org/10.1109/ICDAR.1995.598994

Miyata, S. (1983). Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals, 31(4), 305-311. https://doi.org/10.1346/CCMN.1983.0310406

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.

Talkhan, F. N., et al. (2023). Influence of some environmental conditions on stability and activity of Bacillus thuringiensis formulations. Egyptian Journal of Biological Pest Control. https://doi.org/10.1186/s41938-018-0064-x

Vayssieres, L. (2009). On the tailored assembly of nano-objects into integrated systems: A multiple scale approach. Journal of Advanced Functional Materials, 19(5), 688-697. https://doi.org/10.1002/adfm.200800968

Waskom, M. (2021). Seaborn: Statistical Data Visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

Downloads

Published

2025-06-15

Issue

Section

Artículos

How to Cite

An ANALYSIS OF A BIOPESTICIDE WITH CONTROLLED DOSAGE OF BACILLUS THURINGIENSIS SUPPORTED ON HYBRID HYDROTALCITES USING ARTIFICIAL INTELLIGENCE. (2025). Revista Científica De Ingenierías Y Arquitectura, 4(1), 19-26. https://doi.org/10.56643/rcia.v4i1.201

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.